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ABSTRACT 

A man in an automobile searches for another man who is located at some 
point of a certain road. He starts at a given point and knows in advance the 
probability that the second man is at any given point of the road. Since the 
man being sought might be in either direction from the starting point, the 
searcher will, in general, have to turn around manytimes before finding his 
target. How does he search so as to minimize the expected distaneetravelled? 
When can this minimum expectation actually be achieved ? This paper answers 
the second of these questions. 

The purpose of this paper is to prove an existence theorem concerning the 
linear search problem. The problem, which this author has been circulating 

for some years, is the following. A point t is placed on the real line R according 

to a known probability distribution F. A search is made for the point by executing 
a continuous path in R starting at O. A search plan is a program of the the following 

type: Start in the positive (or negative) direction, and if the point is not found 

before reaching x l ,  turn around and explore the other half of  the real line as 

far as x2. I f  this still does not yield the point, turn around again and explore 

as far as xa,  etc. Thus, we can represent the search plan as a sequence x = (x~} 

with . . . < x 4 < x 2 ~ O < x l < x 3 < . . .  or . . . < x a < x l < O < x 2 < x 4 < . . . .  In 
certain cases, as we shall note below, there may be only finitely many entries in a 
search plan, and one of them (but not more) might be infinite. We use the weak 
inequalities for technical reasons. I f  all the inequalities are strong, we call x a 

strong search plan, otherwise it is said to be weak. A search plan as so defined 
represents all the meaningful planning the searcher can do, since no new infor- 
mation is coming in except that t has not yet been found, and this supposition 

is made in constructing the plan. Thus, assume that F is fixed, and that some plan 

x has been chosen. For  each t, we let X(x, t) be the length of the path from 0 to t 

according to the search procedure x. For  each x, X(x, t) is a random variable, 

and we define 

X(x) = ~(X(x, t)) = ~/~o X(x, t) dF(t). 
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It has long been known by this author (and probably many others) that 
X(x)  can be made finite for some search plan x exactly if the first moment 
MI(F) = j'~®[t[ d F ( t ) <  oo. In that case, we define x~= {fi, -2 f i ,  46,...} and 
then X(x~)< oo and in fact limsup~_.0X(x~)=< 9M 1 (see e.g. [1]). We shall 
assume throughout that Si  o l t] dF(t) < oo. 

t ~ t 7  . _ 

There is an infimum for all the X(x),  and we designate it as mo = too(F) 
throughout this paper. The main problem is to produce a method for finding 
a search plan y with X(y)  -- too, or at least a y~ with X(y~) < m o +  ~ for each 
e > 0. A "best answer" would be a formula for the x~ in terms of F, (or at least an 
algorithm for deciding whether xl is positive or negative). In the pursuit of this 
problem, it is interesting and useful to know whether it is possible to realize the 
infimum for some search plan. 

Under date of October 1963, Wallace Franck, of the University of New Mexico 
has circulated a preprint (see reference) in which he gives sufficient conditions 
for the existence of a minimum and also an example in which there is no minimum. 
The heart of his work is I.emma 1 (pp. 4-5) and an example (pp. 13-14). In this 
paper, we sharpen these last two results to produce a necessary and sufficient 
condition for the attainment of the minimum. Aside from the sharpened results 
(Lemma 3 and Theorem 13 of this paper), the other techniques are reasonably 
simple and not essentially different from those used by Franck. They are included 
only for the sake of completeness. Our main theorem is as follows: 

1. THEOREM. Let F be a probability distribution on the real line and let 
M1 = S-~ [tl dF( t )< ~ .  Define X(x)  as in the above discussion, and let 

F+(a) = limsup,_~o+ ( F ( a + t ) - F ( a + )  , F- (a )= l im  sup,-.o_ (F(a + t) - F(a- )  
t t ' 

Then there is a search plan y with X(y)  < X(x)  for all search plans x i f  a n d  
o n l y  i f  at least one of P+(0) and F-(O) is finite. 

Let us dispose immediately of the trivial cases. I f  the probability that t is negative 
(resp. positive) is 0, then the only reasonable way to search is to proceed to the 
right (resp. left) until t is found. Because of cases like this, we require only that t 
be found almost surely (i.e. with probability 1), and we allow the possibility of 
a search plan with only finitely many entries, one of which might be _ oo. Other- 
wise, if we were to require that every point be searched, even simple cases like this 
would have no minima, thus ruining an otherwise interesting problem. 

Let x -and  x+be so designated that F(t) = 0, Vt < x - ,  F(t) = 1, Vt  > x +, and 
0 < F(t) < 1, Vx- < t < x ÷ . In any case where x -  > - ~ or x + < + ~ ,  we allow the 
possibility that search procedures may be finite and may have _ ~ for the last entry. 

Whenever we reach a point, we shall assume it has been searched, and thus we 
normalize F by assuming that F is continuous from the right in the positive half 
of the real axis and from the left in the negative half. The jump at 0, if there is one, 
is unimportant, as 0 is searched immediately at the outset. Thus, our answer 
will be the same whether we consider the given probability distribution or the 
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condit ional  distribution on the hypothesis t ~ 0. The distribution function for  the  
condit ional  probabi l i ty  is cont inuous at 0, and thus it will not  affect the generality 
of  our  result if  we assume that  F is cont inuous at  0. 

Suppose we choose a sequence x (") = {x[ ")} with X(x  (")) ~ too. A reasonable  

procedure  would be to define Yi = lim,_~ o0 x~ ") and prove  that  X(y)  = m o , where 
Y = Yi. In  fact, where possible, tha t  is exactly our  procedure.  We must  be wary, 

however of  the possibility tha t  x~")-~ 0, Vi, and  this unhappy  circumstance can 

occur regardless of  the nature  of  F, since for  any search plan x, arbitrari ly m a n y  

points  can be added at  the beginning arbitrari ly close to 0, such that  the change 

in X(x)  is as small as we like. Fur thermore ,  x t~ can diverge to + oo but  not,  as we 

shall see, if x - = - oo and x + = + oo. So let us take this case first. 

2. LEMMA. I f  X-  = -- oO, X + =  + o% then we can find a sequence (bi} such 

that Ix i [ < b, < ~ ,  k/i = 1, 2 , - . - ,  holds for every search plan x with X(x)  < 2m o. 

Proof.  Let P1 = min(Pr(t  < 0), Pr(t > 0)). Assume that  x l  > 0; the other  case 

is dual .  In  this case, 

21xi l  " Pl < [ x l l d F ( t ) <  < X ( x , t ) d F ( t ) < 2 m o .  
- - 0 0  

Thus  [ x l l < ( m o / P 1 ) = b l .  In  the same way, let P 2 = m i n ( P r ( t < - b O ,  

Pr( t  > bO). Then 

21x2 I" --< 21x21 dF(t) <= X(x, t) de(t) < 2mo, 
bl  1 

so that  I x21 < (too~P2) = b2. In  general, then, we choose P .  = min (Pr( t  < - b._ 1), 
Pr( t  > b._ a)) and b. = (mo/P.) ,  and this sequence gives us the desired bounds.  

Q . E . D .  

Even if  the hypotheses o f  L e m m a  2 are not  satisfied, something can yet be 
salvaged, as we shall see later. Wha t  of  the possibility that  x ~")~ 0 as n ~ oo ? 

We shall modify  the p r o o f  of  F ranck ' s  L e m m a  1 to show 

3. LEMMA. I f  F-(O) < O < 0% then we can find a K > 0 such that for all 
sequences x with x2 < 0 < xl  and x3 - x4 < K, we can form the sequence y by 
removing xl  and x2 from x (Yi = xi+2, Vi), in which case X(y)  < X(x). 

Proof .  I t  is easy to see (or cf. [1] p. 3 formula  (2)) that  

X(x)  - X(y)  = 2 [ I x  11(1 - I f ( x 1 )  - F(0)I)  + Ix21(1 - I  F(x2) - F(x l ) l )  

+ Ix31(1 - I  F(xa)- -lx l(1- - t(o)l) 

= 2 [(x 1 - x2)(1 - (F(xO - F(0))) - (x a - x2)(F(0) - F(x2))].  

I f  K is small enough,  this difference is positive. Indeed,  let K > 0 be chosen so tha t  
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10 F(K) - F(0) < ½Pr(t > 0), 
f(0) 

2 o ( F ( t ) - - - - - < D ,  V - K < t < 0 ,  
t 

1 
30 K < 2--D" 

Note  that  K is dependent only on F, and not  on x. Assume x3 - x4 < K. In this case, 

we have. xl  < x 1 - x2 < x3 - x4 < K, so that  1 - ( F ( x O -  F(0)) > 1 - ( F ( K ) -  F(O)) > ½. 
Also, Ix21 < x , - x 2 < x 3 - x 4 < K '  so that F ( 0 ) - F ( x 2 ) < D [ x 2 [ .  Finally, 

x3 - x2 < x3 - x4 < K, so that 

X¢x)- X(y)> 2EIx21½-K • Dlx213 > 2E lx21-  lx 13 = o  

Q.E.D. 

4. LEMMA. I f  F-(O) < o0, ~ > O, and x is any strong search plan, then we can 
:find a search plan y such that X(y) < X(x) + 5, Yl > O, and Y3 - Y4 >= K, where 
K = K(F)  is defined in the proof of the previous lemma. 

Proof. Perhaps x~ >= 0. I f  not,  let z = {z~} be chosen with 0 < z~ < x2 and 

z l = x ~ - l ,  V i > 2 .  I f  z 1 is small enough, then X ( z ) < X ( x ) + 8 .  I f  X x > 0 ,  

let z = x. I f  z3 - z4 > K, we are through.  I f  not,  then z ~1) = {z~ ~1)} defined by 

z} a)= Z~+z has X(z  ~1)) =< X(z)  < X(x) + e. Defining z (") by z~ ") = ",~(n-l)+2, we have 

X(z  c")) < X(z  t"-a)) whenever z(3 "-1) -z(,, "-1) < K. Since z3(")= z3+2.~must even- 

tually exceed K (Recall that  F ( K ) -  F(O) < ½Pr(t > 0).), we must come to a 

first n for which ,-a"~") - ,-4"t") => K. Then if we set y = zC",)we have X(y) < X(x) + e. 
Q . E . D .  

5. LEMMA. I f  X ( x ) < 2 m o ,  x x > 0 ,  x 3 - x 4 >  K, and x-  < a < O < b < x  +, 
then x I e [a, b] for only no values of i at most, where n o depends only on F, a, b, 
and K. 

Proof.  Let  P = rain {Pr(x- < t < a), Pr(b < t < x + )}. Then if, for  example, 

a __< x2, =< 0, we see immediately that  

f: < X(x, t)dF(t) < X(x, t)dF(t) < 2too, 
- -  ¢ 0  

so that  n < (mo/KP) + 1. Similarly if 0 ___ x2,+~ < b. Q .E .D .  

6. THEOREM. Let F be our given distribution. I f  x -  = - oo, x + = + 0% and 

F-(O) < 0% then there exists a search plan y with X(y) = too. 

Proof.  The p roo f  given is very similar to that  o f  Franck.  First note that  for 

any weak search plan x, we can find a strong search plan z with X(z)  < X(x).  We 
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do this by first finding the least va lue j  of  i with xj  # 0. I f  we define w by w~ = x~_:+ 1, 
we see that  X(w) = X(x). Now let k be the greatest value of  i with w k = 0. Define 
v~= w~_ k. Then  X(v)<X(w) .  Finally, whenever vi=vi+ z, eliminate v~ and 
v~+ 1 f rom v, thus giving us a new search plan z. It is clear that  z is a strong search 
plan and X(z) < X(v) < X(x). 

Let x <") = {x} ")} be chosen for each n in such a way that X(x ~")) --+ mo. Let K 
be chosen as before, and let a sequence {e,} be chosen with e, > 0, e, --* 0 as n -+ ~ .  
By Lemma 4 and the comments  above, we can choose a strong search plan 

z (") based on x <"~ with z~")> 0, Vn, z3 <")- z~ ")> K, and X(z (")) < X(x (")) + e,. 
Then X(z<"))-~mo, and for each i, {z~ <") } is a bounded sequence. Using the 
diagonal method,  we can extract  a subsequence {z <"+)}of {z <")} with {z} "+)} con- 
vergent fo r  each i as j--+ c~. Fo r  convenience, we assume {z <")} = {z<"J>}. Let  
y~ = lira,z} "), Vi, and y = {Yi}. Then y is a search plan (possibly weak). We 
wish to show that  X(y) = too. Let w~<")be chosen so that  it has the same sign as 

x} ) and so that  Iw,<.,l =max{Ix/") l, IY, I}" Then w}")--+y, as n - + o %  ¥, and 

Choose any k > 0, 6 > 0, and let no be chosen so that [ x:  ") - Y,I < 6, v n > no, 

Yi = 1, . . . ,2k.  Then for  every Y2k < t < Y2k+l, we have 

Thus  
X(w <"), t) < X(x <") , t) + 2 k .  26. 

fr2k X(w <"), t)dF(t) < I r:~ X(x  <"), t)dF(t) + (Y2k- 1 -- Y2~) 2k " 26. 
l "  m ~ 

y 2 k  ~ .J y 2 k  

On the other  hand,  as n -+ ~ ,  we have 

X(w <"), t)-+ X(y, t) for  every t e R. 

Thus,  for  n large enough,  say n > nx, we have 

fy 'lk--1 X(y , t )dF( t ) -  f ' ~ - - 'X (w  C"), t)dF(t) < 6 
2 k  u/ y 2 k  

Thus,  for  n > max{no,  ns}, we have 

f, ':~-' X(y, t)dF(O < 
~2k ff :~-' X(w <"), t)dF(t) + <5 

2k 

f 
Y2k-1 

~- X(  x(">, t)dF(t)+(Y2k-x - Y2k)" 2k .  26 + 6 
o y l k  

t,+,~ 
! x<x'"',,)aF(,) + - y:k)2 . 26 + 6 

Since X(x <")) -~ too, we have for each <5 > 0 
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f y~k-~ X(y, t )dF(t)  < m o + ( Y 2 R - 1  - -  Y2R) 2 k  " 2~ + 6, 
Y 2 k  

so that  

ff ek X(y,  t)dF(t) < m o, V k > O, 
2 k  

and thus 

X(y)  = : + f  _ X(y , t ) dF( t )<mo .  

Since y is a search plan (weak or strong), X(y)  > too, so that  X(y)  = too. Fur ther -  
more ,  we could make  y a s trong search plan (by removing no more  than three 

zeroes at the beginning) and it would then still have this property.  
Q . E . D .  

7. COROLLARY. If, in the above theorem, the hypothesis F - ( 0 ) <  ~ is replaced 
by F+(0)  < ~ ,  then the same conclusion follows. 

Proof .  Clear  by symmetry .  

We deal now with the thornier  case in which x -  > - oo or x + < + ~ .  Let  us 
consider  first the case x -  > - ~ ,  x + = + ~ .  A s  we noted before, the case x - > 0 

is trivial. 

8. THEOREM. Let F be our given distribution. I f  - oo < x-  < O, x + = + oo, 
and t - (O)  < oo, then there is a y with X(y)  = too. 

Proof.  Let  x (n) be a sequence o f  search plans with X(x  (n)) ~ mo as n ~ oo. 
As before,  choose z (n) so that  each z (n) is a s trong search plan with z~"!> 0, 

z~ * ) -  z(4")> K, and so that  X(z  (~)) ~ mo as n ~ oo. I f  {z~ ~)} is bounded  for  
each i as n ~ ~ ,  then the p r o o f  given for  Theorem 6 will apply  here. In  the other  

case, let k be the least value of  i for  which {z} ~)} is unbounded  as n ~ oo. Choose  

a subsequence {z (~J)} of  {z (~) } such tha t  {z} *J)} converges for  each 1 < i <  k, 
while {z~ ~j)} ~ + ~ ,  and  such tha t  X(z  (~)) <2m o , Vj. We shall save notat ional  

difficulties by assuming that  {z (~)} itself is this subsequence. We first show that  
~(~) Then we have Zk21 -* X- .  Let U. = Z(k ") and v~ = ~k- l"  

21u"l ( P r ( t < v ' ) ) =  f~[" 21u"ldF(t)<= f~i" X(z( ') ' t )dF(t)  

so tha t  

< f _ ~  X(z("),t)dF(t) < 2mo,  

Pr(t < v,) < m o ~  0 as n -~ oo, since un = z~ n) --* oo. 
U n  

Thus  ,(n) - as asserted. ~ k _ l -'-:"- V n - "~  X ) 

Lett ing Yi = limn~oo z~t*~ Vi = 1, . . . ,k  - 1, we have as before 
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fx"-" X(y, t )dF(t)  < too, Vn and thus 

Y = (Yl ,  " " ,Yk- I  , +  00) is a search procedure with X(y)  = too. Q . E . D .  

9. COROLLARY. If, in the above theorem, the hypothesis F-(O) < oo is replaced 

by F+(0)  < ~ ,  then the same conclusion follows. 

Proof.  The p roo f  is identical except that  z~ ") < 0 in each z("), which is an in- 

essential difference. 

10. COROLLARY. I f  in Theorem 8 or Corollary 9, the hypothesis - oo < x -  < O, 

x + = + oo is replaced by x -  = - oo, 0 < x  + < + oo, then the conclusions still hold. 

Proof .  Clear by symmetry .  

11. THEOREM. Let F be our given distribution. I f  - ~ < x - < 0 < x + < + ~ ,  

and 1:-(0) < ~ ,  then we can f ind a search plan y with X(y)  = mo. 

Proof.  Define x ~") and z(")as before. I f  the sequence z~ ") is bounded away 

f rom x - and x ÷ for  every i as n ~ ~ ,  then the p roo f  is the same as in Theorem 6. 

Otherwise,  let k be the smallest value of  i for  which {z~ ") } violates this condition. 

Assume {Zk °°} has x ÷ for  a limit point ;  the other case is dual. As previously, we can 
assume each {z~ ")} converges, V1 < i < k, to a point  o f  ( x - , x + ) ,  and z(~")~x +. 

Then let Yi = l i r a  . . . .  z~ "), V1 < i < k, and set y = ( y l , . . . , y k _ x , x + , x - ) .  Then 

as before, X(y)  = too. Q.E .D.  

12. COROLLARY. If, in Theorem 11, the assumption 1v-(O)< oo is replaced by 

iv+(0) < 0% then the same conclusion follows. 

Proof .  Clear  by symmetry .  

13. THEOREM. Let F be a probability distribution with - ,f~-ooltldF(t)< oo.  

Suppose that F - ( 0 )  = F+(0) = oo. Let x be any search procedure. Then there is 

a search procedure y such that X ( y ) <  X(x).  

Proof.  Since F - (0 )  = F+(0) = ~ 5 0 ,  x - < 0 < x +. Thus,  any search procedure 

has at least two entries. Assume xx > 0 ; the other case is dual. Choose  any Yx with 

x2 < Yl < 0 and y ~ i ( F ( y t )  - F(0)) > (1/xi),  so that  F(yx) - F(O) < (yl /xO,  and 
define y~ = x~_ 1, V i => 2. Then 

X(y)  - X(x)  = 2 [ y l ( f ( 0 )  - F(yl)  - 1) + xl (F(y l )  - F(0)] 

< 2 y l ( F ( O ) -  F ( y l ) -  1) + x 1 • 

= 2yj(F(0)  - F(yO) < O, 

so that  X(y)  < X(x).  Q .E .D .  
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Proof  of Theorem. 1. Direct consequence of "l?heorems 6, 8, 11, and 13 and 

Corollaries 7, 9, 10 and 12. Q.E.D. 

In fact, Theorem 12 shows a little more than promised. It shows that if 
/v-(0) = oo (resp. F + ( 0 ) =  oo), then there is no minimal search procedure with 
x I > 0 (resp. xl < 0). Thus, if F- (0)  = 0% F+(0) < ~ (resp. the reverse), then 

we see that there is a minimal search procedure, x, and xt  < 0 (resp. x 1 > 0). 
Thus, in this limited case, we have an indication of the direction of the first entry. 
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